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man/computer interaction.

Our strategy is to test the technical and practical valuewfideas by building

hardware and software prototypes and using them as daily. tbteresting sys-
tems are too complex to be evaluated solely in the abstratetnéed use allows us
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we have common interests, and we encourage collaboratitn waiversity re-
searchers.



Extended Static Checking

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and JameSdXe

December 18, 1998



Author Affiliations David L. Detlefs is a staff engineer at Sun Microsystems
Laboratories. He can be reacheddaivid.detlefs@sun.com . This work
was completed by him and the other authors before he left 8RO96.

©Compaq Computer Corporation 1998

This work may not be copied or reproduced in whole or in parefoy commercial
purpose. Permission to copy in whole or in part without paynud fee is granted
for nonprofit educational and research purposes providatiah such whole or
partial copies include the following: a notice that suchying is by permission
of the Systems Research Center of Compaq Computer ComoratiPalo Alto,

California; an acknowledgment of the authors and individzemtributors to the
work; and all applicable portions of the copyright noticeop@ing, reproducing,
or republishing for any other purpose shall require a lieanih payment of fee to
the Systems Research Center. All rights reserved.



Abstract

The paper describes a mechanical checker for software #iehes many com-
mon programming errors, in particular array index boundsrsr nil dereference
errors, and synchronization errors in multi-threaded pmots. The checking is
performed at compile-time. The checker uses an automat@&m-prover to rea-
son about the semantics of conditional statements, loopsedure and method
calls, and exceptions. The checker has been implementedddula-3. It has

been applied to thousands of lines of code, including matyseems code as well
as fresh untested code, and it has found a number of errors.






O Introduction

The authors of this paper were still children when the legdights of comput-
ing declared that the world faced a “software crisis”. WHilgrdware improved
every year, software was mired in complexity, and prograngnwas expensive,
error-prone, and grueling. But these gloomy observatiads'dstop the software
industry, which proceeded to grow its revenues and profasdtically, and which
has sustained that growth with continuous innovation. \Massbftware crisis a
false alarm?

Not really. Although profitable, writing software is stitkkpensive, error-prone,
and grueling. Innovation in the software industry has nydslen confined to find-
ing new things to do with software, and has not found many newswo produce
software. It is still common to see software disasters inclwhmillions of dollars
are spent writing a program that is abandoned before reléssause the imple-
mentors simply can’t get it to work. The tragic failure toasish software as a
reliable engineering discipline is painfully clear fronudies such as Leveson and
Turner'sinvestigation of the Therac-25 accidep#i].

Although revenues and profits have grown, figures from ecan@onsulting
firm DRI/McGraw-Hill indicate that during a recent periodgénerally rising pro-
ductivity, productivity in the software industry has adtydallen [10]. These com-
putations may not be entirely accurate—since it is diffituttorrect for inflation—
but it seems safe to say that software productivity has npt gace with pro-
ductivity in other areas of the computing industry such aslhvare. In fact, we
would claim that the growth of the software industry has dkflee stagnation of
programming technology only because of the tailwind crde the million-fold
improvement in price/performance of CPUs over the lastythjiears.

As the information revolution moves out of its infancy, and w the engi-
neering community assume the responsibility of deliverimgits vast promises,
from robots to knowbots, it is insufficiently consideredttbar progress would be
enormously accelerated if programming technology adwduoceanything like the
same curve as microprocessors.

Many silver bullets have been heralded as the solution tsdffigvare crisis.
If you have a software problem, Structured Programming Withi is the answer!
The Object-Oriented Revolution will bring mass productimethods to software
and make program fragments into inexpensive reusablélel@mmmodities! Pro-
gram verification will eliminate all errors! Programming iratural language will
eliminate the need for arcane languages; end users wilesggheir requirements
directly to the computer, and programming as a professidnuither away! None
of the dreams behind these slogans has been fulfilled.

We believe that programming and its difficulties are heret&y.sInstead of



silver bullets, we advocate the strategy of studying theiremging practices of
today’s best programmers and developing practical to@sithprove the process,
without expecting to change its essential nature.

This paper describes a particular research project basdHi®strategy: the
Extended Static Checker (called ESC), a programming taal ¢htches errors at
compile time that ordinarily are not caught until runtimedasometimes not even

The refinement of tech-then. Examples are array index bounds errors, nil derefererand deadlocks and
niques for the prompt dis-race conditions in multi-threaded programs. The tool iduld@ecause the cost of
covery of error servesan error is greatly reduced if it is detected early in the tlgw@ent process. The
as well as any other astool is intended to be like a type-checker or like the C toal [23]: its warnings
a hallmark of what we are intended to be interpreted by the author of the progranghEhecked.
mean by science. The checker is implemented using the technology of progranfieation. The
— J. Robert Oppenheimerprogram is annotated with specifications; the annotatedgrpro is presented to a
“verification condition generator”, which produces lodiéarmulas that are prov-
able if and only if the program is free of the particular claggrrors under consid-
eration, and these formulas are presented to an automatostim-prover.

This sounds like program verification, but it is not: firstlgdause we don’t try
to prove that a program does what it is supposed to do, onljéalcfor certain
specific types of errors; secondly because we are inter@stiled proofs only,
not in successful ones. A crucial point is that failed proafe more useful than
successful ones, since they warn the programmer of possitdes. In addition to
being more useful, ESC is more feasible than full-scale qanogverification. For
example, an unsound full-scale program verifier is an oxympbut the amount
of unsoundness to tolerate in a static checker is a mattergiheering judgment:
nobody expects a type-checker or a lint tool to fadberrors; its utility is deter-
mined by the number of errors it finds weighed against the@sinning the tool.
Similarly, since we are not promising that ESC will find altas, we are free to
declare that some kinds of errors are out of the tool's range.

This idea of extended static checking is not new. The firdDPthesis that we
know of that addressed the idea was by Dick Sites a quartecehary ago [44],
and the problem has held its own as a Ph.D. thesis topic evaz.sBut the research
prototype checkers that have been implemented over theldedsmve made too
many simplifying assumptions. They may not handle dynaliyie#located data or
object-oriented programming; they may not handle concuygthey may require
the source for the entire program in order to check any paitt tiey may require
the user to guide the theorem-prover or to provide commatdbop invariants.
Such simplifying assumptions are a way of separating coiscevhich can help to
focus on particular aspects of the problem, thus gaininghdepinsight. Indeed,
our work builds on the deep insights produced by many eartisearchers, but
our ESC project has followed a complementary mode of rebeamonvhich every
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effort is made to produce and test a realistic artifact. Toimplementary mode of
research can often reveal surprises.

Most previous checking tools were tested only on small @ogy written by
the tool implementors themselves. In contrast, our plan twasin our checker
on significant pieces of the Modula-3 runtime system. By lingkrealistic pro-
grams written by others (or in some cases, by ESC project meritefore the
ESC project was launched), we hoped to learn the answerg tolflowing ques-
tions:

e Could we generate verification conditions for such “syst@nograms”?

¢ Would we be able to turn failed verifications into specifioemessages?
e How much of a burden would it be to write the necessary anioois®

e To what extent could we automate the theorem-proving task?

In summary, we were determined to stress-test an idea tddbhg been in gesta-
tion.
Our checker handles multi-threaded multi-module objetrmed programs.
Our checker works on Modula-3 programs [40], but the teamméqwould work
for any language in which address arithmetic is restriciadluding Java, Ada,
Oberon, and FORTRAN. Indeed, as this paper goes to presfipa-on project
has replicated the technology in a tool for Java.
Our checker performs modular checking: you can use it to lclsstected
modules of a program without checking the entire programmc&imodern pro-
gramming is inconceivable without libraries, we considexdular checking to be
essential.
The checker also allows you to check for selected classesasgfor exam-
ple, it is often useful to check for deadlocks and race camutwithout checking
for array index bounds errors.
When the checker produces spurious warnings, there areietyvaf ways
to suppress them, that is, to get the checker to ignore theosisuwarnings and
continue to report real errors. A type-checker is a Nean-
Although our checker is a research prototype, with plentyoofgh edges, wederthal program verifier:
feel that it demonstrates the promise of the technology role@ly than previous it isn’t very smart, but it’s
checkers: ESC catches errors that no type-checker coutilghpsatch, yet it feels hardy and it’s friendly.
to the programmer more like a type-checker than a prograiifiererThe specifi- — Jim Morris.
cations required are statements of straightforward faktsihequalities, the error
messages are specific and accurate with respect to sourtierpasd error type,
and the theorem-proving is carried out behind the scenesratically.
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SPEC (procedure or method namme( (formal parameter namés)
MODIFIES (list of variable$
REQUIRES (precondition
ENSURES(postconditiof

Figure 0: Procedure specification syntax.

Our main goal for this paper is to convey to the reader whaetd like to use
a checker that operates in this intermediate level betwgm¢hecking and verifi-
cation. Therefore, the paper consists largely of two examphfter the examples,
we describe at a rather general level some of the novel aspé&our checker, but
we have relegated many details to other papers.

1 The specification language

In this section, we lay the groundwork for the examples tlwamfthe heart of
the paper by briefly introducing ESC'’s specification languaghe design of the
specification language reflects the structure of well-desdgorograms.

One pillar of program structure iprocedural abstractionin which a com-
pound operation is named and parameterized and used bysthef the program
as though it were an elementary operation.

Procedural abstraction makes static analysis difficultdifitcult that many
static analysis methods described in the literature apply to programs with-
out procedures, and many practical compilers perform rey-ptocedural analysis
at all, even if they perform extensive intra-procedural lgsia. The reason for
this is that the authors of compilers and other tools havewarited to rely on
specifications, but inter-procedural analysis fundanintaquires dealing with
specifications, whether supplied by the programmer or iateby the tool.

To perform inter-procedural analysis, ESC relies on progreer-supplied spec-
ifications of the form illustrated in Figure 0. Pre- and posigitions are formulas
in a first-order theory that includes the Modula-3 built-ipegators.

A procedure specification is a contract between the impléenemd the client:
the client contracts to call the procedure in a state whexgthcondition is true,
and the implementer contracts (a) to modify no variable piktteose in theM ODI-
FIES list, and (b) to return only in a state satisfying the posttiton. Thus when
checking the body of the procedure, ESC assumes that thera#ion is true
initially, and checks that when the procedure returns thetqmmdition is true and
only those variables in th®MMODIFIES clause have been modified. Conversely,
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SPEC VARv . (type
SPEC REPv = (concrete representation

Figure 1. Data abstraction syntax.

when checking a client, ESC checks that the preconditioruss &t the point of
call, and assumes that the call respects both the post@mnditd theMODIFIES
clause.

For example, here are a Modula-3 declaration and ESC spaaificof a sim-
ple random number generator:

VAR seed: INTEGER,;
PROCEDURE Rand(n: INTEGER): INTEGER;
<* SPEC Rand(n)
MODIFIES seed
REQUIRES 0 < n AND seed # 0
ENSURES 0 <= RES AND RES < n AND seed # 0 *>

The example also illustrates several other points. Fiostafvariable listed in the
MODIFIES clause (such aseed ), occurrences in the postcondition can be un-
primed or primedgeed’ ). A primed occurrence denotes the value of the variable
in the post-state, while an unprimed occurrence denotesahe of the variable

in the pre-state. Second, the reserved n&&Sis used to denote the result of
the procedure, if any. Third, Modula-3 pragma brackets*> , surround the
ESC annotations to distinguish them from ordinary Modula=8urth,x # vy is
Modula-3 syntax to assert that the valuexandy are different.

Another pillar of program structure @ata abstractionin which a collection of
program variables (croncrete variablesare considered conceptually to represent
a singleabstract variable The abstract variable is used by clients for reasoning
about the semantic effect of operations on the abstracéiod,the concrete vari-
ables are used by the implementation to operate efficientihe state.

For example, the abstract value of a complex nundesuld be represented
concretely in terms of two floating point Cartesian coortiisa x andzy; alterna-
tively the same abstraction might be represented in terntiseopolar coordinates
zr andztheta Generally, the module structure of a program is arrangetiadhe
concrete representation of an abstraction is invisiblat(i, out of scope) within
the modules that use the abstraction ¢ltentg [42].

Figure 1 shows the ESC syntax for declaring an abstracthlarand specifying
its representatior(also known as itabstraction function For example,
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<* SPEC VAR a: INTEGER *>
VAR c: INTEGER;
<* SPEC REP a = c*c *>

declares an abstract integer variablea concrete integer variabte and specifies
that the square af represents.

We haven't described the whole specification language, leutave described
enough to give the first example.

2 An elementary application of Modula-3 writers

Both of the two extended examples in this paper use Modwdastandard 1/O li-
brary, which is designed around the key abstraction of a tnmd object-oriented
buffered stream. In particular, readeris an input stream and\ariter is an out-
put stream. Each stream object contains a buffer and meflooasanaging the
buffer. Different stream subclasses override the methodtffierent ways, so that,
for example, a file reader refills the buffer from the disk ametwork reader refills
the buffer from the network. Class-independent code canob@mon to all sub-
classes; for exampl&yr.Putint  writes the ASCII representation of an integer
into a writer's buffer. The Modula-3 design is described inapter 6 of Nelson’s
Modula-3 book [40], the original design is described by Saogl Strachey [46].
We describe various aspects of the relevant interfaces aseed them for our
examples.

For each type of stream, the Modula-3 I/O library provides interfaces, a
basic interface for simple clients, and an advanced interthat offers additional
functionality (in particular, access to the buffer struefuat the price of additional
complexity.

The basic writer interface. Our first example uses only the basic writer interface
Wr, which is presented in Figure 2. Here is a translation of Fidlfrom Modula-3
into English. The writer class is given the global nauve. T , whereWr is the
name of the interface and@ is by convention the principal type declared in the
interface. The class is declared as an opaque object tyfdiclpuknown only

to be a subtype of the built-in clag®OOT (In Modula-3, classes correspond to
object types.) The actual declaration of the represemtdipe is hidden in the
advanced interface, and is invisible to clients of the basarface. The procedures
PutChar , PutText , andClose have the given signatures and specifications
(TEXT is Modula-3’s predeclared string type). (The actual irsteef has eleven
procedures instead of three, but these are represent@tieecinterested reader can
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INTERFACE Wr,;
TYPE T <: ROOT;

<* SPEC VAR valid: MAP T TO BOOLEAN *>
<* SPEC VAR state: MAP T TO ANY *>

PROCEDURE PutChar(wr: T; ch: CHAR);
<* SPEC PutChar(wr, ch)
MODIFIES state[wr]
REQUIRES valid[wr] *>
PROCEDURE PutText(wr: T; txt: TEXT);
<* SPEC PutText(wr, txt)
MODIFIES state[wr]
REQUIRES valid[wr] AND txt # NIL *>
PROCEDURE Close(wr: T);

<* SPEC Close(wr)
MODIFIES valid[wr] *>

END Wr.

Figure 2: The (simplified) writer interface.



find the ESC-annotated version of the full interface refeeghfrom the Extended
Static Checking homepage on the Web [9].)

A U-valued fieldf declared in a clas$ corresponds semantically to a map
from T to U. Thus the declarations ofalid andstate can be thought of as
BOOLEANalued andAN Y-valued fields of writers. Although Modula-3 uses the
syntaxx.f to denote thé field of an objecix, the annotation language uses the
syntaxf[x] whenf is abstract.

The specifications for the writer interface fall into a conmyattern that we
call thestate/validity paradigmIn this paradigm, there are two abstract variables,
valid andstate . The idea is thavalid[wr] represents the condition that
wr is a properly-initialized valid writer, angtate[wr] represents all other state
of wr (for example, its contents and position). If we were doinlr$uale pro-
gram verification, there would be pages of specificationsutbtate ; but since
we are doing extended static checking only, there is almoittimg to say about
state , except to specify that some procedures may modify it. (Nehehe type
of state is relevant, so we use the special ESC tyyi¢Y.) In the state/validity
paradigm, specifications become very stylized. A typicacpdure or method op-
erating on a writewvr (like PutChar ) has the specification

MODIFIES state[wr]
REQUIRES valid[wr]

Becausevalid does not appear in tfdODIFIES list, this specification implies
the preservation of validity.

Often a few procedures will have some additional annotatiefor example,
PutText requires that its text argument be nbiik —but for simple interfaces
the stylized specifications of the state/validity paradeyethe lion’s share of what
has to be written for an ESC verification.

The text writer interface.  Figure 3 illustrates theext writerinterface, a particu-
lar writer subclass that occurs in our example. A text wiiseat writer that doesn’t
do any output; it just stores everything that has been writtean internal buffer
and provides a procedu@etText that returns the contents of the buffer as a
TEXT.

BecauselextWr. T is a subclass oiNr.T , the specification variablesalid
andstate apply to text writers, and are used in the specification otéewriter
interface. The methomhit initializes a text writer (establisheglid’[twt] )
and returns it (establishd8ES=twt ). The specification is entirely typical for ini-
tialization methods in the state/validity paradigm. Sarly, the specification of
GetText is typical of the state/validity paradigm, with one addii@b postcondi-
tion conjunctRES # NIL.



INTERFACE TextWr,
IMPORT Wr,

TYPE T <: Wr.T OBJECT
METHODS
init(): T
END;
<* SPEC T.init(twr)
MODIFIES Wr.valid[twr], Wr.state[twr]
ENSURES Wr.valid'[twr] AND RES=twr *>
PROCEDURE GetText(twr: T): TEXT,;
<* SPEC GetText(twr)
MODIFIES Wr.state[twr]
REQUIRES Wr.valid[twr]
ENSURES RES # NIL *>

END TextWr.

Figure 3: The text writer interface.



1 PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
2 VAR twr := NEW(TextWr.T); BEGIN

3 FOR i := 1 TO NUMBER(a) DO

4 Wr.PutText(twr, a[i])

5 END;

6 RETURN TextWr.GetText(twr)

7 END ArrayCat;

Figure 4: The first (erroneous) version of the example pnoguses a text writer
twr to accumulate the growing concatenation of the elemends of

Example. Our first example program is the kind of elementary prograngmi
exercise that might be assigned to students first learniqgdgram with output
streams, and we have seeded our program with elementang.efiioe problem is
to program a procedure that takes an array of texts as an arguand returns a
single text containing the concatenation of all the textthaarray. This could be
done rather straightforwardly by repeatedly calling theddia-3 binary concate-
nation operatiomext.Cat , but doing so leads to a performance trap, since with
most implementations of text concatenation, the total cosime of this simple
approach can be proportional to the square of the lengthedfirtial result. A good
way to avoid this quadratic cost is to use a text writer, whéatds us to the proce-
dureArrayCat shown in Figure 4. The procedure allocates a text writertesri
the elements of the array to the writer in order, and finallyieges and returns a
text containing everything that was written. (This apptoavoids the quadratic
cost if text writers are well-implemented.)

Running ESC on thérrayCat procedure of Figure 4 produces a warning
about an array index bounds error:

array index bounds error, line 4:
Wr.PutText(twr, ali] )

(The exact format of an ESC error message is identical toahatcompiler error
message; in this paper, we use italics and underlining toeyothe same infor-
mation.) The error message also includes a so-called “eootext” which is a
long list of atomic formulas that characterize the situatio which the error can
occur. Because it is long, we won’t show the error contexehbut we remark that
a study of the context reveals that it implies the formgilUMBER(a) , which

is in fact the condition in which the array bounds error canusc in Modula-3,
open arrays are indexed from 0, but R@Rloop was written as though they were
indexed from 1. Correcting the error in one natural way pamtuthe following
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improved program:

1 PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
2 VAR twr := NEW(TextWr.T); BEGIN

3 FOR i := 0 TO NUMBER(a)-1 DO

4 Wr.PutText(twr, ali])

5 END;

6 RETURN TextWr.GetText(twr)

7 END ArrayCat;

This version of the loop eliminates the warning about theyalrounds error. But
now ESC complains about this program as follows:

precondition failed, line 4:
Wr.PutText( twr, ali])

A study of the error context reveals that it implies the fotaNOT valid[twr]

That is, ESC has detected and warned about the failure talimgtwr (the pro-
gram allocated the text writer, but failed to initialize.it)lo correct this error,
we add a call to thenit method, which requires inserting the seven characters
“.init() "

1 PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
> VAR twr := NEW(TextWr.T).init(); BEGIN

3 FOR i := 0 TO NUMBER(a)-1 DO

4 Wr.PutText(twr, ali])

5 END;

6 RETURN TextWr.GetText(twr)

7 END ArrayCat;

This correction eliminates both of the previous warningg, BSC gives one more
warning:

precondition failed, line 4:
Wr.PutText( twr, ali])

A study of the error context shows that th&XT argument tdPutText is equal
to NIL , which is forbidden by the precondition &utText but not ensured by
ArrayCat ,which blindly passea[i] ,whetherornotitidNIL . This error forces
a rethinking of the design folrrayCat : what should we do aboMIL entries
in the TEXTarray? Two designs come immediately to mind: to ignidie s or to
forbid NIL s. Either design is easy to get through ESC. In the designetikrs
are ignored, the procedure is recoded as follows:
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PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
VAR twr := NEW(TextWr.T).init(); BEGIN

FOR i := 0 TO NUMBER(a)-1 DO
IF afi] # NIL THEN Wr.PutText(twr, afi]) END
END;

RETURN TextWr.GetText(twr)
END ArrayCat;

and of course ESC, which understanfs statements, is perfectly happy with this
version. In the design whelgIL s are forbidden, the specification farrayCat
is strengthened with a quantified precondition:

<* SPEC ArrayCat(a)
REQUIRES (ALL [i: INTEGER]
0 <= i AND i < NUMBER(a)
IMPLIES a[i] # NIL ) *>

ESC is perfectly happy with this design, too: the strongecpndition suppresses
the error message. Furthermore, ESC will enforce the s&opgecondition wher-
everArrayCat is called.

We would like to make several comments about this example.

First, although careful specifications were required fenthiter and text writer
interfaces, the beginning programmer was able to make us8Gfwithout writing
any specifications for his program at all. No preconditiontoop invariants were
required inArrayCat . We think that this is as it should be: anybody qualified
to design the interfaces of a stream library understandsopiitions and postcon-
ditions and abstractions at some level, and will find an exptiotation for their
design decisions to be a useful tool rather than a burdenh®nother hand, many
simple errors in programs can and should be identified byimgatie unannotated
erroneous program; to require a loop invariant in order teogtArrayCat seems
pedagogical and heavy-handed.

Second, the reader should be aware that, although we havertoated in this
example on the checking of a client of the 1/0O system, we havadgt also used
ESC to check the implementation of text writers. In the impdatation, a rep-
resentation declaration is made to give the concrete mgaviimalid[twr] in
terms of the concrete fields ofir . And this representation is used by ESC when
checking the body of procedures likaitText andGetText , that require valid-
ity as a precondition and whose implementations dependendhcrete meaning
of validity.

A third remark that this example allows us to make is that iipsto the user
to choose a point on the continuum between full functiomatertness verification
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and minimal extended static checking. For example, it isah frue that initializing
a text writer leaves its contents empty, but our specificatidid not reflect this
truth. If we wanted to, we could reflect this by strengthertimg postcondition of
init  along the following lines:

<* SPEC T.init(twr)
MODIFIES Wr.valid[twr], Wr.state[twr]
ENSURES Wr.valid’[twr] AND RES=twr
AND Wor.state'[twr] = " *>

(This would also require changing the type of the state of iewfrom ANYto
SEQ[CHARY]. Also, the notation" is not actually correct for the empty character
sequence.) It would be easy to concoct an artificial exanmplehich this stronger
specification would be essential for some ESC verificatioor. @&xample, the ab-
sence of array bounds errors in some client might dependefatit that a newly
initialized text writer is empty. But this is a slippery skplf init ’s effect on
the state is specified fully, why nétutChar ’s as well? Without discipline, you
can quickly slide into the black hole of full correctnessifreation. Luckily, our
experience has been that many ESC verifications can be sfidbesompleted
with almost no specifications at all about the contents andnings of abstract
types, other than the specification of validity. You can goraglway just relying
on the state/validity paradigm: that is, the specificatifumseach procedure record
accurately how the procedure affects and requires validityall other side effects
are swept under the ample rug ODIFIES state[wr] . We believe this is a
key reason why ESC verifications can be more cost effectiar fhll correctness
verifications.

3 An advanced application of readers

In this section, we will describe the use of ESC on a more stighted program,
WhiteSpace.Skip . The example is also a short client program of the Modula-3
I/O system, but differs in several ways from the example & phevious section.

A rather minor difference is that this program is a client mput streams rather
than output streams. A more important difference is thahis &xample, we will
pay attention to the synchronization protocol that is desiginto both readers and
writers. In the previous example, we omitted synchronimain order to simplify
the exposition. Another important difference is that irsteection we will see a
program that uses the advanced interface to deal with tHerbstfucture of the
stream, instead of exclusively using the procedures in #s&chinterface.
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PROTECT v BY mu shared variable is not to be accessed without
holding the lockmu

PROTECT f BY SELF for every object , shared field.f is notto be
accessed without holding the lotk

LL set of locks held by the current thread

sup supremum (maximum) in the programmer-
declared locking order

Figure 5: Locking-level syntax. The second formRROTECTan be used only
whenf is a field declared in a subclassMUTEX

How ESC checks for synchronization errors. Our experience has been that
many synchronization errors are failures to acquire locksi§ing race conditions)
or acquiring locks out of order (causing deadlocks). Thaeefwe have designed
the ESC annotation language to catch these simple erraysrd=5 shows the syn-
tax. The programmer declares which locks protect which eshamariables and
which locks can or must be held on entry to various procedureg programmer
also declares a partial order in which threads are alloweatctire locks. ESC
checks that shared variables are never accessed withalibgpahe lock that pro-
tects them, and also checks that threads acquire locksiatlysincreasing order
(Modula-3 features non-reentrant locks). This doesn’tvproorrectness—more
expensive techniques like monitor invariants would be megufor that—but it
does catch many common errors.

The locking order on mutexes is denoted ky,“and the programmer specifies
it using a general facility for adding axioms to an ESC veaifion: SPEC AXIOM
For example, the Modula-3 window system is based on an obpd aVBT.
VBTs are arranged in trees, and can be locked only from a leafeofrée toward
the root, not vice versa. This rule is declared in YH&T interface as follows:

<* SPEC AXIOM (ALL [v: VBT.T] v < v.parent) *>

Axioms about the locking order arise only in subtle situasio In particular, the
example we are about to present acquires only one readeralogakime, so we
don'’t need to declare axioms about the locking order.

The basic reader interface. Figure 6 shows the basic Modula-3 interfaRd,

including its ESC specifications. The only new features guFeé 6 relate to con-
currency. The synchronization protocol designed into eesds highly stylized,
we call it themonitored-object paradigmAn object is treated like a monitor in
that mutual exclusion is provided for threads operatinghenabject via procedure
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INTERFACE Rd;
IMPORT Thread;
EXCEPTION EndOfFile; Failure(TEXT);

TYPE T <: MUTEX,;

<* SPEC VAR valid: MAP T TO BOOLEAN *>
<* SPEC VAR state: MAP T TO ANY *>

PROCEDURE GetChar(rd: T): CHAR
RAISES {EndOfFile, Failure, Thread.Alerted};

<* SPEC GetChar(rd)
MODIFIES state[rd]
REQUIRES valid[rd] AND sup(LL) < rd *>

PROCEDURE EOF(rd: T): BOOLEAN
RAISES {Failure, Thread.Alerted}

<* SPEC EOF(rd)

MODIFIES state[rd]

REQUIRES valid[rd] AND sup(LL) < rd *>
PROCEDURE UnGetChar(rd: T);
<* SPEC UnGetChar(rd)

MODIFIES state[rd]

REQUIRES valid[rd] AND sup(LL) < rd *>

PROCEDURE Seek(rd: T; n: CARDINAL)
RAISES {Failure, Thread.Alerted}

<* SPEC Seek(rd, n)
MODIFIES state[rd]
REQUIRES valid[rd] AND sup(LL) < rd *>

END Rd.

Figure 6: The (simplified) basic reader interface.
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calls and method calls. The mutual exclusion is achieveablitg the object it-
self, whose type is a subtype BIUTEXModula-3’s predeclared mutual exclusion
semaphore type. Acquiring the lock is equivalent to entgtire monitor.

The text of the interface in Figure 6 reflects the monitoregect paradigm in
two ways. FirstRd.T is declared to be an opaque subtype nd@&OTbut of MU-
TEX Second, the monitor entry procedures have the extra pdgcmmsup(LL)
< rd , which reflects the requirement that they be called from & $tewhich it is
legal to acquire the lockd .

The advanced reader interface. The basidRd interface is the one used by most
simple clients, but it is insufficient for more sophistidgatelients. For example,
since it hides the buffer and the method for refilling the byfit is insufficient for
clients that implement new classes of readers. Figure 7 stiogRdrRep inter-
face, which provides the specifications needed for moreistipdted clients. With
theRdrRep interface we get beyond the boiler-plate ESC specificatamagigms,
and start to put the specification language through its paces

The interface begins by revealing the representation ofyjppbe Rd.T , which
is opaque in the basic interface. The representation is pattolype containing a
buff field, which is a reference to an array of characters. The N&8keyword
BRANDEDBubstitutes name equivalence for Modula-3’s default ttirat equiva-
lence for types. In addition to theuff field, Rd.T also contains several integer
and boolean fields. The integer fields determine the activiopmoof the buffer,
according to a convention illustrated in Figure 8. The banléelds are irrelevant
for this example. The full interface contains several mdthdut we show only the
seek method, since the others are irrelevant for our example.

The SPEC PROTEC@nnotation specifies that the fields of a reader are pro-
tected by the reader itself; that is, a thread is not alloweg#&d or write any of the
reader’s fields unless it has acquired the reader lock. Timstation is typical of
the monitored-object paradigm.

Next we come to the specification séek . This method is responsible for
performing the class-specific computation involved in safioning the buffer: the
call rd.seek(n) repositions the buffer so that byte numbepf the source of
the reader is present in the buffer. In particularseek(rd.hi) will advance
to the next buffer of data (sincel.hi is the index of the first byte that is be-
yond the current buffer of data). The method retudeekResult.Ready if the
repositioning is successful;iifis beyond the end of the reader, it retuBeekRe-
sult.Eof . (If dontBlock is set and theeek method can'’t do its job without
risking blocking, it is allowed to retur®eekResult.WouldBlock . But that
isn’'t relevant for this example.)
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INTERFACE RdrRep;
IMPORT Rd, Thread;

TYPE
SeekResult = {Ready, WouldBlock, Eof};
CharRefArray = BRANDED REF ARRAY OF CHAR;

REVEAL Rd.T = MUTEX BRANDED OBJECT
buff: CharRefArray;
st, lo, cur, hi: CARDINAL;
seekable, intermittent: BOOLEAN
METHODS
seek(n: CARDINAL; dontBlock := FALSE): SeekResult
RAISES {Rd.Failure, Thread.Alerted}
END;

<* SPEC PROTECT
Rd.T.buff, Rd.T.st, Rd.T.lo, Rd.T.cur, Rd.T.hi,
Rd.T.seekable, Rd.T.intermittent
BY SELF *>

<* SPEC Rd.T.seek(rd, n, dontBlock)
MODIFIES Rd.state[rd]
REQUIRES Rd.valid[rd] AND sup(LL) = rd *>

<* SPEC DEPENDS Rd.valid[rd: Rd.T] ON
rd.st, rd.lo, rd.cur, rd.hi, rd.buff *>

<* SPEC REP Rd.valid[rd: Rd.T] IFF
{NonNil: rd # NIL} AND
{BuffNonNil: rd.buff # NIL} AND
{LoBeforeCur: rd.lo <= rd.cur} AND
{CurBeforeHi: rd.cur <= rd.hi} AND
{BuffAmple: rd.st+rd.hi-rd.lo <= NUMBER(rd.buff")} *>

<* SPEC DEPENDS Rd.state[rd: Rd.T] ON
rd.st, rd.lo, rd.cur, rd.hi, rd.buff, rd.buff",
rd.seekable, rd.intermittent *>

END RdrRep.

Figure 7: The (simplified) advanced reader interface.
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Figure 8: Reader representation.

The ESC specification of threeek method is much simpler than the informal
functional specification. The specification is the standare for a monitored ob-
ject in the state/validity paradigm. The only new point téio®is that the locking-
level precondition issup(LL)=rd instead ofsup(LL)<rd . This reflects the
design decision thaseek is a so-called internal monitor method (to be called
from within the monitor) rather than a monitor entry methad e called from
outside the monitor).

The SPEC DEPENDSnnotations can be ignored for now; they will be ex-
plained in Section 5.

The SPEC RERleclaration specifies the concrete representation of the ab
stract variablevalid[rd] . Clients of the basi®dinterface care whether readers
are valid, but don’t care what validity means in concreten®rclients ofRdrRep
do care, since they have access to the reader’'s concretsegpation. Thus this
interface is an appropriate place to declare this repraient TheSPEC REP
declaration folRd.valid  declares that a reader is valid if it is non-nil, its buffer
is non-nil, itslo , cur , andhi fields are in ascending order, and its buffer’s size
is ample. The conjuncts of the formula are labeled; theseldadre optional, but
including them allows ESC to make its error messages morfeluségure 8 illus-
trates these conditions.

The RdrRep interface is fairly subtle. Instead of the simple idiomwvatlid
andstate , it exercises many of the features of ESC'’s specificatioguage. This
is because the interface must carefully balance the rageines of simple clients,
subclass implementations, and the class-independenerngpitation. Designing
such a critical interface is inherently difficult. We belethat any programmer
who is skilled enough to do a good job designing RarRep interface will not be
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intimidated by the specification language.

Example. Behind our next example there is a story. A student workingun
laboratory as a research intern had written a parser, and Wwseparser was slow,
he complained to one of the authors (Nelson) that the Modufgut library was
inefficient. Nelson asked the intern to measure the perfoomanore carefully and
figure out where the time was going.

The intern reported back the next day that “you wouldn’t éndiit, but almost
all the time is going into skipping white space in the lexerNelson said he did
believe this report, and asked how the lexer skipped whisdeespThe answer was:

MODULE WhiteSpace;
IMPORT Rd, Thread;

CONST WhiteChars =
SET OF CHAR { ’, \t', \n’, '\r'};

PROCEDURE Skip(rd: Rd.T) RAISES {Rd.EndOfFile,

Rd.Failure, Thread.Alerted} =

VAR ch: CHAR; BEGIN
REPEAT

ch := Rd.GetChar(rd)

UNTIL NOT ch IN WhiteChars;
Rd.UnGetChar(rd)

END Skip;

BEGIN
END WhiteSpace.

Nelson suggested to the intern that instead of making a wroaittry call per
character, it would be more efficient to impd&trRep and skip the white space
directly in the buffer itself. The intern resisted, protagt“Isn’t that a violation of
abstraction? | can't believe thgou, Greg Nelson, of all people, would violate ab-
straction by pawing over the grotty buffer!”. Nelson madesgpropriate response,
and the intern implemented a new version. Later, he repdréett cheerfully, “I
tried your idea and it worked! And you're right, it's much fad”. But the intern
complained that th&drRep interface was confusing and requested that Nelson
check over his code.

Nelson has a vivid memory of the intern’s program: it is liste Figure 9.
The procedure consists of a single loop. The loop begins &tingerd.cur <
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1 MODULE WhiteSpace;
> IMPORT Rd, RdrRep, Thread;

4+ CONST WhiteChars =

5 SET OF CHAR { ’, '\t', \n’, '\r'};
7 PROCEDURE Skip(rd: Rd.T)

8 RAISES {Rd.Failure, Thread.Alerted} =
9 BEGIN

10 LOOP

1 IF rd.cur < rd.hi THEN

12 IF rd.buff[rd.cur] IN WhiteChars
13 THEN INC(rd.cur)

14 ELSE RETURN

15 END

16 ELSIF Rd.EOF(rd)

17 THEN RETURN

18 ELSE Rd.Seek(rd, rd.cur)

19 END

20 END

21 END Skip;

23 BEGIN

2« END WhiteSpace.

Figure 9: The intern’s attempt at writing an efficient progexlthat skips white
space.
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rd.hi . If the test succeeds, the current character is presenteirbuffer, and
it can be tested for whiteness and skipped if necessary. eltdhtrd.cur <
rd.hi fails, the procedure has exhausted the current buffer witfioding a non-
white character. In this case, the loop uses the RdllSeek(rd, rd.cur)
to advance to the next buffer, after testing that there isterdouffer via the call
Rd.EOF(rd)

This all occurred before ESC was written, so the errors initliern’s code
were found and removed by other means. But today we can rundaSke code.
Running it produces, first, the following error message:

nil dereference error, line 11:
IF rd.cur < rd.hi THEN

This warning is boring; it is just ESC’s way of saying thatdnt do much useful
checking unless you provide it with a specification. Of ceutise client is not
supposed to callvhiteSpace.Skip(rd) if rd isNIL , or for that matter ifrd
is not valid. So to get rid of this spurious error, we add toititerface the typical
specification

<* SPEC Skip(rd)
MODIFIES Rd.state[rd]
REQUIRES Rd.valid[rd] *>

And now running ESC produces a more interesting error:

race condition reading shared field, line 11:
IF rd.cur < rd.hi THEN

This warning is useful: the program erroneously reads (anfhét also writes)
shared data fields without holding the lock that protectaithe

It is not surprising that the intern made this error. Progresrs who are not
experienced at concurrent programming have a regrettabgency to ignore all
the comments about concurrency in an interface they argyuaimd since casual
testing rarely reveals these errors, they do not surfademath later.

To fix the race condition, we must either require that the eedod locked on
entry to the procedure, or else we must lock the reader irthiel@rocedure. The
later fix is preferable, since it mak&ghiteSpace.Skip  a monitor entry pro-
cedure, just likeGetChar or EOF Therefore, let us fix the error by bracketing
the body of the procedure withOCK rd DO ... END . At the same time, we
change the precondition to be as follows:

REQUIRES Rd.valid[rd] AND sup(LL) < rd
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(If we had forgotten to addup(LL) < rd tothe precondition, ESC would warn
of a possible deadlock at th€&CK rd, since the verifier can't prove that it is legal
to lockrd on entry to the procedure.)

Now the checker gets one line further before it complains:

array index bounds error, line 12:
IF rd.buff[rd.cur] IN WhiteChars

The intern has confused stream indexes with buffer indeXé&s. indexrd.cur
is a stream index and could be enormous. Looking at FigureeBsae that the
correction is to substitute

rd.buff[rd.st+rd.cur-rd.lo]

for rd.buff[rd.cur] . Itis interesting to note that the array index bounds error
in ArrayCat that was detected in Section 2 was an off-by-one error, wtichd
have been detected by many ad-hoc techniques. But the betnodsn WhiteS-
pace.Skip is not an off-by-one error; it is caused by a confusion oveéadtruc-
ture invariants. We believe that the theorem-proving aniigation methods used
by ESC are necessary to catch such errors.

It may be a bit surprising that such a blatant error was notatd by the
intern’s testing. Presumably, he tested his code only ardsia disk files (where
st is 0) and only on files that were smaller than the 8 KB readefemsifof the
standard library. Within the first buffer, stream indexed &affer indexes agree.

The next error from the checker is

precondition failed, line 16:
ELSIF Rd.EOF( rd)

It is unfortunately common to introduce a deadlock wheneximg a race con-
dition, and this is just what we did above when we locked tredee on en-
try to WhiteSpace.Skip . The checker is warning us that the attempt to call
Rd.EOF(rd) from within the procedure would self-deadlock. The warnings-
sage is “precondition failure”, since the locking-leveparement forRd.EOF is
specified in its precondition.

To fix this deadlock, we observe that the procedure is someinbansistent:
the top of the loop is coded in the style of a client of the adeaninterfaceRdr-
Rep, for example by directly accessing the fields of the readdrite bottom half
is coded in the style of a client of the basic interf&d; for example by calling the
operationsRd.EOF andRd.Seek . The correction is to code the bottom of the
loop in the same style as the top, by calling ek method directly. Instead of
theEOFandSeek procedure calls in
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ELSIF Rd.EOF(rd)

THEN RETURN

ELSE Rd.Seek(rd, rd.cur)
END

we invoke theseek method ornrd :

ELSIF rd.seek(rd.cur) = RdrRep.SeekResult.Eof THEN
RETURN
END

After this correction, the checker finds no more errors.
This concludes our second example. In the next few sectibtiegaper, we
describe at a high level some of the crucial aspects of thgmes$ our checker.

4 Tool architecture: A bird’s eye view

Figure 10 shows a diagram of the major modules of our chedkee. verification
condition generator parses and type-checks an annotabgdapn and produces a
logical formula called the verification condition. This @bimon is valid if the pro-
gram is consistent with its annotations and free of the erioiFigure 11. The
condition is submitted to an automatic theorem-provet, ljle in program verifi-
cation, but unlike in program verification, we have no instiia the case where the
theorem prover succeeds. Instead, the tool post-procdssesem-prover failures
into meaningful error messages.

The checker is programmed in Modula-3. To parse and typekchedula-3,
it uses the Olivetti Modula-3 front-end toolkit, designadlamplemented by Mick
Jordan [24]. Not counting the toolkit, the verification cdiah generator is 34000
lines of code and the theorem-prover is 26000 lines of cote.system is available
from the ESC home page on the Web [9].

5 Generalized data abstraction

An important property of our checker is that it works on iridival modules; you
don’t need to provide it with a complete program. The chedleasons about
procedure calls and method calls using specifications, mptementations. The
basic idea of reasoning about procedure calls using prémmsl postconditions,
and MODIFIES clauses has been understood for several decades, but we foun
that the basic idea that works so well on the examples in tbgram verification
literature did not work on the standard Modula-3 libraries.
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Annotated program

Verification condition generator

Verification condition

Theorem—prover — Success

!

Failure

Post processor

!

Error message

Figure 10: Block diagram of the ESC tool.

array bounds error accessing protected variable
NIL dereference without a lock

subrange error acquiring locks out of order
narrow fault (type-cast error) precondition violation
functional procedure fails to return a value postconditiaration
exception not irRAISES clause program invariant violation
CASEvalue handled by no arm MODIFIES clause violation

TYPECASHalue handled by no arm
divide orMOLDby zero

Figure 11: Errors reported by ESC.
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The problem is not that the libraries use unsafe code or émstltricks; the
problem is that they use patterns of data abstraction teatcrer than those treated
in the literature. It turned out to be a major problem to desigchecker that al-
lows modular checking and supports the patterns of dataizaiisin that are used
in modern object-oriented designs. In this overview paper,have space only
to sketch the kinds of difficulties and hint at our solutiofay; a fuller treatment,
we refer the reader to our companion papdastraction and specification revis-
ited [30].

A basic dilemma. In writing specifications for a multi-module program, wedac
a fundamental dilemma. Specifications require that praeedeclarations include
a list of what variables can be modified by a call to the prooedBut in a properly
modularized program, the variables modified by a procedwgaisually private to
the implementation, and are not in scope at the point of detaden of the proce-
dure.

Solution: abstraction. The solution to the dilemma is data abstraction. The
specification describes the side effects of the proceduterms that are of use
to its clients, that is, in terms of abstract variables. Thaatete variables that
are used to represent the abstract variables can be condirtled private scope of
the implementation. Generally the representation functioprivate to the same
implementation scope.

Using data abstraction to solve the basic dilemma has dengrartant conse-
guences.

Downward closure. The first consequence of using data abstraction is that ab-
stract variables can appearMODIFIES lists; and that the meaning of an abstract
variable in aMODIFIES list is that the license to modify the abstract variable im-
plies the license to modify the concrete variables thatasgmt it. For example,
consider the implementation &d.GetChar

PROCEDURE GetChar(rd: Rd.T): CHAR
RAISES {EndOfFile, Failure, Thread.Alerted} =
VAR res: CHAR; BEGIN
LOCK rd DO
IF rd.cur = rd.hi THEN
IF rd.seek(rd.cur) = RdrRep.SeekResult.Eof
THEN RAISE EndOfFile
END
END;
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res := rd.buff[rd.st + rd.cur - rd.lo];
INC(rd.cur);
RETURN res
END
END GetChar;

Obviously, this modifiesd.cur , butrd.cur does not occur in th®MODIFIES
list of GetChar (see the listing of th&d interface in Figure 6). Why doesn’t the
checker complain? Becausg.cur is part of the representation of the abstract
variablestate[rd] , whichGetChar is allowed to modify.

Thus theMODIFIES list

MODIFIES state[rd]
of GetChar is “downward closed” to
MODIFIES state[rd], cur[rd], ...

where the ellipses stand for the other concrete variab@esentingtate[rd]

The checker does not complain about the updated.tur in GetChar because
the MODIFIES list is closed before the verification condition is genedatéThe
reader may wonder how the checker knows which variables anteop the repre-
sentation oftate[rd] ; this is explained below.)

Protecting related abstractions. The second consequence of using data abstrac-
tion is that postconditions must be strengthened to “ptatated abstractions”.
To see this, consider the question: what prev&wsChar from destroying the
validity of its reader? Sincegalid[rd] does not occur in th&1ODIFIES list
of GetChar , callers (and our checker when reasoning about a callet)tmugt
thatGetChar preserves validity. BuGetChar is allowed to modify the state of
the reader, and thereby, through downward closure, is dleeed to modify the
representation of the state, which includes concrete himsathat are part of the
representation ofalid . Thus the license to modify the state threatens to modify
validity. Evidently, the omission ofalid from the MODIFIES list must impose
on the implementor the obligation of proving that the charnigethe state are such
thatvalid[rd] is unchanged. Indeed, our checker strengthens the pogioond
of GetChar with the conjuncwalid’[rd] = valid[rd] , So that if validity
is destroyed, the checker will complain.

Here is another (more contrived) example. If two abstraciatdéesa andb
both are represented in terms of two concrete variablesdd, then in a scope
wherea, b, c, andd are all visible,
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MODIFIES a
is desugared into

MODIFIES a, c, d
ENSURES b’ = b
That is,c andd are included because of downward closure, and the related ab
stractionb is protected from change by adding it to the postcondition.

In a scope whera andb are visible butc andd are not visible, the original
MODIFIES list

MODIFIES a

remains unchanged after downward closure and protectioglated abstractions.

Soundness lost. Both the downward closure and the protection of related ab-
stractions are reflected in the checker's semantics of dzgteaction as rules for
desugaring specifications. The desugaring depends on whitdbles represent
which other variables. The knowledge of this represemtatidormation is differ-
ent in different scopes, and therefore the desugaringfisrdiit in different scopes.
This is frightening, since it raises the possibility thateafdesugaring, the speci-
fication used in reasoning about the calls to a procedure edtifferent from the
specification used in checking its implementation. Thus ito longer clear that
checking the modules individually ensures that the contpgsiogram is free of
errors.

In fact, it is easy to see that without imposing additionaiditons, we have no
hope of sound modular checking. For example, supposetisgpart of the repre-
sentation of an abstract varialdethat botha andc are visible in some scope, and
that no declaration in the scope gives any clue of the coimrebetween the vari-
ables. Then the checker has no chance of reasoning coredmilyt the program,
since modifications of may affecta, and modifications oé (via procedure calls)
may affectc, and neither side effect can be expected by the checker.

The rep-visibility requirement. A simple way to restore soundness is to impose
the following requirement, which we might call tiep-visibility requirement

Whenever is part of the representation of an abstract variabland
botha andc are visible in some scope, then the representatioa of
must also be visible in that scope.
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The classic treatment of data abstraction by C.A.R. Hoamiaitly imposes this
requirement, since it requires that the representationadirits concrete variables
be declared together [18].

Unfortunately, we found many examples in the Modula-3 lileswhere the
rep-visibility requirement is too strong. As one simple myde, in the scope
of RdrRep (and of WhiteSpace.Skip ) the concrete variables that represent
Rd.state are visible, but the representation itself is not. Furthenenit would
be very awkward to place a representation declarationstate[rd] in this
scope, for two reasons. First, since we are doing ESC vdiditanly, we don't
want to get bogged down in the complexities of the state. Welavprefer never
to declare the representationsifite[rd] at all. Second, even if we were doing
full-scale verification, the representation of the state mdader is subclass-specific,
so not all variables that are part of the representationraszope, but the scope
RdrRep is class-independent. (The infeasibility of the rep-vlgiporequirement
is also manifest from the more detailed example in our congmapaperAbstrac-
tion and specification revisitg@0].)

Explicit dependencies. We therefore introduce a new specification language con-
struct, DEPENDSwhich is a way of specifying that one variable is part of the
representation of another, without giving the actual repngation. In the case of
readers, we write

DEPENDS Rd.state[rd: Rd.T] ON
rd.st, rd.lo, rd.cur, rd.hi, rd.buff, rd.buff’

in interfaceRdrRep . Thus we commit the design decision that these concrete vari
ables are part of the representationstdite[rd] , While deferring the decision
of what the representation is.

The depends-visibility requirement. Armed with DEPENDSwe weaken the
rep-visibility requirement to thelepends-visibility requirement

Wheneverc is part of the representation of an abstract variahland
botha andc are visible in some scope, then the dependency of
¢ must also be visible in that scope.

Sketch of the rest of the story. We hope this section has given the reader a
flavor of the issues we have wrestled with in trying to prodacgsound modular
checker. Summarizing briefly, practical systems prograsesinformation hiding
in ways that make it problematical to generate verificationditions in a sound
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and modular fashion. A key ingredient of our solution to tiheljem is the explicit
declaration of dependencies. In the full story, there aversékinds of dependency
declarations, and different requirements are imposed fbereint kinds of depen-
dencies. For the details, we refer the reader to our compagpaperAbstraction
and specification revisite[80].

One problem in this area that stumped us is a form of rep expdhat we call
abstract aliasing. We have been unable to design a staterafibrceable program-
ming discipline for avoiding this problem. Our best effoaie described in our
companion papeWwrestling with rep exposurg]. In the meantime, we take the
view that it is the programmer’s responsibility to avoid &aset aliasing.

6 Verification condition generation

More than half of the code in our checker is devoted to the td#skanslating
the annotated Modula-3 into the verification condition (M&)e presented to the
theorem-prover. This task is governed by the classic lawdazfre logic [17], but
the demands of our checker require some novel approachasually expounded,
Hoare logic provides a framework for checking a hand-carcséd proof of some
program property. Such a proof typically requires invat$eat many control points,
but we want VC generation to be totally automatic. Therefove translate the
annotated Modula-3 into a version of Dijkstra’s guarded o@mnds [7, 39], and
then use their weakest-precondition equations to genérat®’C. This approach
provides a better foundation for an automatic tool, sincekest preconditions
have more of a calculational flavor than Hoare logic.

Our theorem-prover has a novel feature that allows our arettkreport spe-
cific error messages: any subformula of the theorem-provautican bdabeled
If the prover finds a counterexample, it emits the set of kloélrelevant subfor-
mulas that are false in the counterexample. The implementaf this feature will
be described in our companion pap&n automatic theorem-prover for program
checking5]. The VC generator uses this feature by labeling the patifyations
in the VC corresponding to each possible error. The nameeliahel encodes
the source position and error type. This makes it straightiod to translate failed
proofs into specific error messages.

The translation of Modula-3 control structures into guardemmands is quite
straightforward, but the effect of the type system on thadiaion is more inter-
esting. Like pre- and postconditions, type declarationgtaa declarative infor-
mation about the program. Our checker uses this informafldrus, the effective
precondition of a procedure is IREQUIRESlause conjoined with the precondi-
tion implicit in the procedure declaration. For examples #ifective precondition
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assumed on entry to the body of
PROCEDURE P(x: CARDINAL);

must imply 0 < x, since the type system guarantees this. Slightly moresubtl
consider the procedure

PROCEDURE Q(t: T);
where the typd contains &CARDINAL
TYPE T = OBJECT val: CARDINAL; link: T END;

The effective precondition assumed on entry to the bod®@ofiust imply 0 <
t.val, 0 < t.link.val, O < t.link.link.val, etc.(as far as these are defined).
Since ESC’s theorem-prover is for the untyped predicateutas, we took the
expedient, if inefficient, approach of encoding Modula{§jse system in untyped
first-order logic. For example, the extra precondition assd for the body of
Q) isIsT(t) , wherelsT is axiomatized in the first-order language of the
theorem-prover. We spare the reader the full complexithefaxiomatization, but
here’s a simplified version:

(Vt i IsT(t) = t=NIL Vv (IsCARDINAL(t.val) A IsT(t.1ink)) )
(VX :: IsCARDINAL(X) = 0 <X)

Similarly, the extra precondition assumed for the body0f) above ilISCAR-
DINAL(x) . The language-enforced condition that variables haveegahi their
declared types is important not only for assumed precanditbut also for other
parts of the program, including assumed postconditidndPECASEand NAR-
ROWand loops. For a full account of this subject for a languaglker than
Modula-3, see Leino'€cstatic: An object-oriented language with an axiomatic
semanticg29].

Semantic correctness is only half the battle: Logicallyiegjent forms of the
verification condition can cause the heuristic search dgrtedtheorem-prover to
perform different patterns of case analyses, which can Hemmatic performance
consequences. Although there seems to be no way to guathatgbe theorem-
prover will not choose a disastrously slow pattern of casdyeses, luckily we have
found a few straightforward heuristics that seem to preweistin practice. This
often neglected issue is in fact a crucial aspect of VC géioeraFor the details of
some of the heuristics, see our companion p#peautomatic theorem-prover for
program checking5].
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7 The theorem-prover

We did our first experiments using the Larch prover [12]. 8itlds prover requires
human guidance to find a proof, the programmer had to guiderbhesr through
a proof, and an error would be revealed by the failure of thec@ss. Damien
Doligez found a locking error in auto-flush writers usingstiprover, but for mere
mortals it is too laborious to be practical.

Therefore, we wrote our own theorem-prover, which is desigto be totally
automatic, and which is powered by automatic decision ghoes for the func-
tions and predicates that are important in programming ditigular, equality and
arithmetic). The overall structure of the theorem-provatoivs the design in the
Ph.D. thesis of one of the authors (Nelson) [37]. Anotherdrtgmt requirement
that shaped the design of the theorem-prover is that failedfp lead to compre-
hensible error messages. In particular, the prover is agtui-based: to prove a
verification conditionVC, the prover attempts to satisfyVC. In full-scale pro-
gram verification, the failure to satisfyVC implies thatVC is valid and the pro-
gram meets its specification; in an ESC verification, thesattion of—VC gives
an error context for the original program. The systematicagstive search tech-
niques are identical, although the purpose is different.

By far the most time-consuming part of running the checkénesbacktracking
search in the theorem-prover. We find that the checker isllydugtween five and
fifty times slower than the compiler. This is too slow to usatioely with every
compilation, but it is fast enough to be useful. (Hardwarsigigers have learned
that it is worthwhile to run simulations and design checkengen if they are so
slow they have to be run overnight. We think that ESC can dfffersame benefits,
but for software instead of hardware. As another point of garison, many good
programming teams make use of code reviews, in which a caeengtudies a
program line by line. Overnight ESC runs are cheap by corapar) We have
sometimes found it irritating that the time taken by the grog unpredictable.

The input to our prover is a formula of the untyped first-orgesdicate cal-
culus, with equality and function symbols, quantifierstharietic, and McCarthy’s
storeandselectfunctions [35]. Quantifiers are handled by a heuristic mat¢hat
exploits equalities and can be guided by user-supplieddéi” terms. The details
of the theorem-prover design will be described in a compapiper [5].

8 Soundness considered harmful

As we have mentioned several times, failed proofs are tuimederror messages.
But what if the proof of the verification condition succeedisthis case the tool has
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nothing useful to report, and its output is “Sorry, can't fisudy more errors”. We
have found in demonstrating the tool that people laugh attt@ssage, but we want
to be absolutely clear that in this case we do not claim to higveously proved
the absence of all errors, since our tool's verification eagias some sources of
unsoundness that are included by design. Two of these are:

e There are some kinds of errors that we do not try to find: it &ghogram-
mer’s responsibility to avoid them. These include arithmeterflow and
abstract aliasing (see [30, 4]).

e Although it is possible to use the checker with loop invaisamve generally
use neither programmer-supplied nor inferred loop invagdsee Section 9),
and in this mode we generate a precondition for the loop thatiaker than
the true infinite limiting precondition. That is, the verditton condition
generation is unsound.

We don'’t view these unsoundnesses as problems, since tteepdeaty of er-
rors that the checker can find. We think it important to useresgying judgment
to decide which kinds of errors are worth checking for, basethe different costs
and benefits of each kind of check. To categorically requiet the tool be sound
means that it must catch all kinds of errors, which avoidsficdit cost-benefit
tradeoff by retreating to a mathematical idealization. sTisi nothing more than
a breach of engineering responsibility. (Interestinglpwgh, our theorem-prover
is sound, as far as we know; it has been in VC generation thdtave found it
valuable to leave some kinds of errors to the programmer.)

9 Loops

An important point to notice about the two extended exampkeshowed in previ-
ous sections is that the programmer is not required to supply invariants. ESC
implements three techniques that greatly reduce, or cdeipleliminate, the need
for programmer-supplied loop invariants.

The first technique infers a loop invariant by static analysfi the loop body,
using a version of the abstract interpretation method ofs6band Cousot [3]. We
thank Frangois Bourdoncle for help with the design and enm@ntation of this part
of ESC.

The second technique (“loop modification inference”, or D.iglesses a loop
invariant by strengthening the part of the enclosing prace’d postcondition that
comes from théMODIFIES clause.

The third technique (“even weaker precondition”, or ewpnelates the need
for loop invariants by considering only those computatiamsvhich the loop is
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executed a bounded number of times (in particular, O or 1d)me€his apparently
crude technique is remarkably effective in practice. Ofreeuy it is not sound.
In fact, it is a good example of the wonderful liberation we bg dropping the
shackles of soundness.

The user can activate these techniques using a commansiiteh. (The ab-
stract interpretation switch is no longer supported.) T¢moants of the two exam-
ples in this paper assumed the ewp technique. The checkitig ofaders/writers
package described in Section 10 was performed using eable ditee techniques,
but when using LMI, the checking resulted in three spurioasnings.

10 Experience

In this section, we report on our experience using the chredkaoking over our
experiments, we find that we used the checker to perform ttifferent levels
of verification: ESC verifications (which check the absentthe errors listed in
Figure 11), locking-level verifications (which check thesabce of deadlocks and
race conditions only), and functional-correctness vetfans (which are like ESC
verifications but also check functional correctness). €hesels of verification
are denoted by ESC, LL, and F in Figure 12. Each of these |@falsrification
also checks the program to be consistent with its annostigWwe say “check”
instead of “prove” since, as explained in Section 8, the Vfegator leaves certain
errors to the programmer to avoid.) Averaged over the 20@Q0ce lines, the
annotation overhead was a 13.6% increase in the numbereasf IWe find this to
be a reasonable price to pay for the additional checking.

In the standard Modula-3 I/O library, we have done an ESCfigation of
the class-independent readers code as well as all the stlaretaler subclasses.
We have done a locking-level verification of most of the clagiependent writers
code, and an ESC verification of several writer subclassas. ahnotated code is
available from the ESC home page [9]. This exercise did nobver any errors in
the I/O library, but it taught us many things about data alasibn that are described
in Section 5 and our companion papers [30, 4].

We have done two experiments in which we turned the checkeatsoown
source code. One of the more complicated modules in our enesSimplex ,
the part of the automatic theorem-prover that reasons alimedr inequalities.
A straightforward but very detailed module in our checkeParseSpec , the
recursive-descent parser for the annotation language. ave tone ESC veri-
fications of bothSimplex andParseSpec . The specifications we wrote for
ParseSpec ensured not only the absence of errors but also the propeestia
the parse trees constructed. This is more than ESC verificatit less than func-
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tional correctness, so we list it as ESC+ in Figure 12. We ditfind errors in the
well-exercisedSimplex module, but we found several ParseSpec .

Most of our verifications have been of mature code. To test BE@nde-
bugged code, two of the authors (Leino and Nelson) teamedthfRajit Manohar
to write a new writer clasRrettyWr , a writer that formats its output stream by
judicious insertion of line breaks and indentation, andvemds the result to an-
other writer. This is a short but tricky program; it took tHede of us two days
to design and code. ESC found four errors (a violation of thleity invariant, a
failure to declare an exception that needed to be propagateelf-deadlock, and
the access to a shared field without holding the protectiog)loAfter fixing the
errors and proceeding to test the program, we found two mawogse an infinite
recursion (which is an error within the range of the ESC temphes, but not han-
dled by our current checker), and a failure to format colyecaused by missing
an assignment to a boolean (which was beyond the scope okperiment, since
we didn't try to annotate for functional correctness).

In another experiment to run ESC on fresh code, Leino teampeadth Cormac
Flanagan to write a program that generates and prints ramdapes. ESC found
no errors in the first version, which also performed withaubewhen it was tested.
Shortly thereafter, Leino introduced an optimization, avith it an initialization
error, which ESC reported.

We conclude from these experiments that in fresh code, E&Catah a sub-
stantial fraction of the errors that are ordinarily deteldby debugging.

The Modula-3 windowing library, Trestle, is highly concent and requires
careful synchronization. Allan Heydon has done a lockimgl verification of the
Trestle Tutorial [34], in which he discovered a latent budisTlatent bug would
have been difficult to find by testing, since it would strikdyoim Trestle imple-
mentations in which selection values were communicateity laetween address
spaces. While the Trestle specification was designed tav dday communica-
tion of selection values, all Trestle implementations ttedammunicate selection
values eagerly.

One of the authors (Leino) had been working on supporting-frend anno-
tations in an on-line document viewing system, and in thersswf this work
he extended the Trestle library with a module (callabicPath ) that converts
polygonal paths into smooth cubic splines. He applied EStisomodule, but
found no errors.

In addition to the 1/O library, we have done ESC verificati@isother parts
of the standard Modula-3 libraries [20]. Most of this codemature and well
exercised and we found only one error. In a recent additiothéolibrary, the
genericSequence module, we found the following glaring error: insteadiof
= i MOD n, the code read
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Package fles lo.c. lo.a. lo.a/l.o.c. checking level
Readers/writers 14 2495 470 0.188 ESC/LL

(O 3 674 75 0.111

Simplex 3 2157 184 0.085 ESC

ParseSpec 2 2559 793 0.309 ESC+
List 1 110 23 0.209

PrettyWr 3 411 115 0.279 ESC

Maze 5 403 93 0.230 ESC
Rand 1 24 12 0.500

Trestle Tutorial 28 2201 169 0.076 LL
Trestle 27 6736 346 0.051

CubicPath 2 633 110 0.173 ESC
Path 1 179 22 0.122

Sequence 3 587 185 0.315 F

Text 3 381 103 0.270 F
Fmt 1 296 17 0.057

TOTAL 97 19846 2717 0.136

Figure 12: Packages checked by ESC, showing for each patkagaumber of
files, lines of code (l.o.c.), lines of annotation (l.0.@jpportion of annotation
lines to code lines, and the level of verification performéxdented rows show
interfaces outside the package that were annotated in trddreck the package.

IFn<=iTHEN i :=1i - n END

where there was a possibility of being as large a&*n . This error had not been
exposed by testing. Later, we extended the annotatioBedguence to perform a
functional-correctness verification, but this did not r@eny more errors. We also
did a functional-correctness verification of tliext module. Figure 12 presents
some statistics about the verifications mentioned in thei@@ Not surprisingly,
it shows that the ratio of annotation lines to code lines isceably higher for
functional-correctness verification.

In several ESC verifications described above, it was negesannotate some
of the interfaces used. For example, in checkingGlbicPath module, it was
necessary to specify theath interface. In checking the readers/writers package
and the Trestle Tutorial, it was necessary to specify a numbiaterfaces, but we
don't list their names individually. Figure 12 includeststcs on the annotations
of these imported interfaces.

In a rather different sort of experiment, one of the authbrstlefs) and George
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Necula have used ESC to reason about dynamic reachabilitykied structures.
Their hope was to replace garbage collection with expliedlibcation statements,
and to check by ESC that the explicit deallocations are &, ghus combining
the safety of garbage collection with the efficiency of esilly managed storage.
They succeeded with several modest-sized programs imgpliniear lists, but the
reasoning required about reachability was very expendterhaps this approach
can become practical, but not without some more work.

11 The tarpit of creeping aspirations

In this section, we record a cautionary note suggested bexperience.

Two important features of our annotation languageNMVARANJASSUME
Adding the annotatioNOWARNTto a line suppresses any errors of typassoci-
ated with that line. The annotatighSSUMEP lets the programmer take responsi-
bility that P holds at the point of the annotation. These are useful wheh &fits
a spurious warning. UsinOWARBNJASSUMIEEan feel like defeat, and there is
a temptation to work harder, adding specifications to cawitne theorem-prover
that the warning is indeed spurious. The problem is that yay spend hours or
days persuading the checker of the validity of a piece of dbdéwas never re-
ally in any doubt to begin with. We call this the problem ofepéng aspirations.
Well-trained scientists are particularly susceptiblehie problem.

As an example of the danger of creeping aspirations, the ESfication of the
maze-generating program depends on the fact that it is amiamt of the union-
find data structure that the number of equivalence classpssitive. No doubt
ESC could be dragged through a proof of this fact, but theeeatho looks at this
example on the Web [9] will find the line

<* SPEC ASSUME 0 < t.numClasses *>

which illustrates the more pragmatic approach that we aateoc

Of course theNOWARIBNd ASSUMHeatures are unsound, but that doesn’t
bother us. On the contrary, we are convinced that theserématre essential to
make a checker useful.

12 Related work

We don’t know of any system as semantically thorough andraatiz as ours, but
many systems have solved pieces of the puzzle.

Full-scale, but not automatic, program verifiers include #arly systems of
James King [26, 25] and Peter Deutsch [6], the Stanford Pascidier [32], the
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Gypsy Verification Environment [14] for developing prograrfy iterative refine-
ment of specifications, the Penelope [15] verification syster a subset of Ada,
and the coalgebra-based Java verifier LOOP [22].

Automatic static checkers that are based on conventiomapier flow analy-
sis rather than program verification are not as semantitadisough as our checker,
because, for example, they ignore the semantics of conditetatements. Check-
ers of this kind include LCLint [8], which checks C programsnatated with a
version of Larch/C [16]; Daniel Jackson’'s Aspect, a novedtegn that warns of
CLU procedures that fail to update the (representation efahstract) variables
they are specified to modify [21]; Nicholas Sterling’s statice analysis tool War-
lock [45]; and Joseph Korty's Sema, a Lint-like tool for deteg deadlocks in a
semaphore-based Unix kernel [27].

Our approach is perhaps closest to that of Steve German’'sHeak veri-
fier [13]. German seems to have been the first to have given liypdale cor-
rectness verification in order to achieve a more automatt t@vhile German’s
work was mostly for integer and integer array programs, weehaxercised our
tool on realistic concurrent object-oriented multi-mcglpkograms. Another early
tool influenced by German’s work is the Ford Pascal-F Ver[Béi.

The earliest and most forthright exposition known to us @& goal we are
pursuing is the conclusion of Dick Sites’s thesis [44].

We agree with the widespread view that if a tool is to be papitlanust some-
how spare its users the burden of annotating every loop witineariant. This
view has stimulated a large body of work on automatic infeesaf program in-
variants, including the pioneering work of Wegbreit [48ahe systematic theory
of abstract interpretation introduced by Cousot and Co[&otThree interesting
program checkers based on abstract interpretation areé&isaBourdoncle’s Pas-
cal checker Syntox [1], Alain Deutsch’s Ada checker [47d &ormac Flanagan’s
Scheme checker MrSpidey [11]. As explained in Section 9, m@lemented and
experimented with a version of abstract interpretationfiimding loop invariants,
but our experience led us to the conclusion that it is bettetat without loop in-
variants altogether, rather than to synthesize them.

The goal of improving programming productivity is servedaby better tools
supporting traditional testing and runtime checking. Iplgusible that a system-
atic, disciplined use of a dynamic checker like Eraser [48lld do as well as
ESC at detecting race conditions and deadlocks. Also inréme @f detecting race
conditions is the Cilk tool Nondeterminator-2 [2], whichliased on an intriguing
combination of static and dynamic checking, but which waskdy for fork/join
synchronization, not for locks.
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13 Conclusion

The formal undecidability of most questions of static asmyhave led most pro-
grammers to conclude that in reviewing code for errors, @iyiman programmer
can take accurate account of the semantics of tests andegpadlata structures:
that type-checking and data flow analysis are the upper birsemantic analysis
compatible with automation. Our most general conclusiahas this widely-held
pessimistic view is mistaken: by adopting the technologprogram verification
while leaving behind its most quixotic goals, it is possitiebuild a checker that
achieves an unprecedented combination of automatic eperatth semantically
accurate analysis.

At a more specific level, we found positive answers to sevefréthe specific
guestions that we were investigating:

e We are able to generate verification conditions for realisiystems pro-
grams, but doing so required us to introduce two new teclasigthe locking-
level annotations for handling concurrency andBHePEND @nnotation for
reconciling data abstraction with information hiding.

e We are able to turn failed proofs into specific error messadgése major
work required for this was in the theorem-prover.

e The annotation burden is minimal. Most of the annotatiore siraight-
forward inequalities or other conditions that an experezh@rogrammer
will record anyway, in English comments if not in the checkemnnotation
language. Programmer-supplied loop invariants are natired, for useful
checking.

e The theorem-proving can be carried out automatically, withuser guid-
ance. Although ESC is not as easy to use as a type-checles|strhore like
a type-checker than a program verifier.

On the other side of the ledger, the theorem-prover is tow dto use the
checker routinely with every build. Also, the unpredictapiof the performance
is annoying.

From a mathematical or methodological point of view, the trogeresting
outcome of our project is the theory of dependencies skdtahéection 5, be-
cause this theory seems to point the way to sound modulasmagsabout object-
oriented systems. Thus this theory increases our undeéiataof how to structure
large programs, but it is more subtle and complicated thawadd wish.

Today’s best engineering organizations produce softwgrstérting with de-
sign methods that (in principle) yield programs that arerextrby construction,
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and then following up with a disciplined testing effort. We aptimistic that this
engineering process could be improved by carefully incilgdiome amount of ex-
tended static checking.
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